Abstract

A physiologically based toxicokinetic and toxicodynamic (PBTK-TD) model was developed for benzo[a]pyrene (B[a]P) in scallop Chlamys farreri. The PBTK model structure consisted of gill, digestive gland, adductor muscle, hemolymph and other tissues. In TD modeling, aryl hydrocarbon hydroxylase (AHH) activity assay, comet assay, protein carbonyl measurement and lipid peroxidation level determination in digestive gland were used as biomarkers to reflect toxic effects. We integrated B[a]P concentration and biomarkers by using sigmoid Emax model in digestive gland. The PBTK-TD model predicted the B[a]P concentrations within each organ compartment and the toxic effects in digestive gland. The results showed that the predicted and measured data in different organs were in good agreement and comet assay was considered as the best biomarker. This model would serve as a useful tool for pollution monitoring and food security.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call