Abstract

Recent studies have shown a close correspondence between perceptual detection thresholds for sounds in quiet and a measure of neuronal thresholds derived from the stimulus-dependent timing of the first spike of auditory-nerve fibers. In addition, stimulus properties might be encoded by differences in first-spike timing of neurons in the central auditory system. Therefore, the physiological mechanisms underlying first-spike timing are of considerable interest, but are not thoroughly understood. Here, we present a physiological model which accurately explains the observed stimulus dependence of the first-spike latency of auditory-nerve fibers with a minimum number of physiologically plausible parameters. Two of the 5 parameters can be considered constant (at least for the vast majority of fibers), while the other 3 vary in meaningful ways with the fibers' spontaneous discharge rates. The elements of the model and some implications are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call