Abstract

Concern about the carcinogenic potential of styrene (ST) is due to its reactive metabolite, styrene-7,8-oxide (SO). To estimate the body burden of SO resulting from various scenarios, a physiologically based pharmacokinetic (PBPK) model for ST and its metabolite SO was developed. This PBPK model describes the distribution and metabolism of ST and SO in the rat, mouse and man following inhalation, intravenous (i.v.), oral (p.o.) and intraperitoneal (i.p.) administration of ST or i.v., p.o. and i.p. administration of SO. Its structure includes the oxidation of ST to SO, the intracellular first-pass hydrolysis of SO catalyzed by epoxide hydrolase and the conjugation of SO with glutathione. This conjugation is described by an ordered sequential ping-pong mechanism between glutathione, SO and glutathione S-transferase. The model was based on a PBPK model constructed previously to describe the pharmacokinetics of butadiene with its metabolite butadiene monoxide. The equations of the original model were revised to refer to the actual tissue concentration of chemicals instead of their air equivalents used originally. Blood:air and tissue:blood partition coefficients for ST and SO were determined experimentally and have been published previously. Metabolic parameters were taken from in vitro or in vivo measurements. The model was validated using various data sets of different laboratories describing pharmacokinetics of ST and SO in rodents and man. In addition, the influences of the biochemical parameters, alveolar ventilation and blood:air ventilation and blood:air partition coefficient for ST on the pharmacokinetics of ST and SO were investigated by sensitivity analysis.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.