Abstract

We developed a physics-informed neural network based on a mixture of Cartesian grid sampling and Latin hypercube sampling to solve forward and backward modified diffusion equations. We optimized the parameters in the neural networks and the mixed data sampling by considering the squeeze boundary condition and the mixture coefficient, respectively. Then, we used a given modified diffusion equation as an example to demonstrate the efficiency of the neural network solver for forward and backward problems. The neural network results were compared with the numerical solutions, and good agreement with high accuracy was observed. This neural network solver can be generalized to other partial differential equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.