Abstract

This letter proposes a physics-informed action network (PIAN) for power system transient stability preventive control (TSPC). The network firstly renders deep learning to reduce the TSPC complexity. Unlike common data-driven methods that superficially imitate control experience, TSPC is then analytically embedded into the proposed PIAN network, so that to enforce the network to learn in-depth physical patterns. The well-learned PIAN enables highly generalized real-time decisions. Comparisons with one model-based and two data-driven baselines on the IEEE 39-bus system and the IEEE 145-bus system highlight that, the proposed method enables highly reliable control decisions, and beats the others in terms of decision efficiency and generalizability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call