Abstract

Active shape control for an antenna reflector is a significant procedure used to compensate for the impacts of a complicated space environment. In this article, a physics-guided distributed model predictive control (DMPC) framework for reflector shape control with input saturation is proposed. First, guided by the actual physical characteristics, an overall structural system is decomposed into multilevel subsystems with the help of a so-called substructuring technique. For each subsystem, a prediction model with information interaction is discretized by an explicit Newmark- β method. Then, to improve the system-wide control performance, a coordinator among all the subsystems is designed in an iterative fashion. The input saturation constraints are addressed by transforming the original problem into a linear complementarity problem (LCP). Finally, by solving the LCP, the input trajectory can be obtained. The performance of the proposed DMPC algorithm is validated through an experiment on the shape control of an antenna reflector structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call