Abstract

A physics-based compact analytical model for studying the current–voltage characteristics of perovskite solar cells has been proposed by considering the external voltage-dependent carrier transport, exponential photon absorption, and bulk charge carrier recombination. The explicit analytical expressions for both the forward dark and photocurrents in perovskite solar cells are derived. The current in the external circuit is calculated considering the actual solar spectrum. The mathematical models are verified and useful physical parameters are extracted by comparing the model calculations with the published experimental results on various perovskite solar cells. The proposed model shows excellent agreement with the experimental results. The power conversion efficiency can be improved further by enhancing the carrier transport in the perovskite layer. The improvement in charge carrier transport enhances the fill factor and hence the power conversion efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call