Abstract
This paper presents a physics and data co-driven surrogate modeling method for efficient rare event simulation of civil and mechanical systems with high-dimensional input uncertainties. The method fuses interpretable low-fidelity physical models with data-driven error corrections. The hypothesis is that a well-designed and well-trained simplified physical model can preserve salient features of the original model, while data-fitting techniques can fill the remaining gaps between the surrogate and original model predictions. The coupled physics-data-driven surrogate model is adaptively trained using active learning, aiming to achieve a high correlation and small bias between the surrogate and original model responses in the critical parametric region of a rare event. A final importance sampling step is introduced to correct the surrogate model-based probability estimations. Static and dynamic problems with input uncertainties modeled by random field and stochastic process are studied to demonstrate the proposed method.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.