Abstract

A physical-space version of the stretched-vortex subgrid-stress model is presented and applied to large-eddy simulations of incompressible flows. This version estimates the subgrid-kinetic energy required for evaluation of the subgrid-stress tensor using local second-order structure-function information of the resolved velocity field at separations of order the local cell size. A relation between the structure function and the energy spectrum is derived using the kinematic assumptions of the stretched-vortex model for locally homogeneous anisotropic turbulence. Results of large-eddy simulations using this model are compared to experimental and direct numerical simulation data. Comparisons are shown for the decay of kinetic energy and energy spectra of decaying isotropic turbulence and for mean velocities, root-mean-square velocity fluctuations and turbulence-kinetic energy balances of channel flow at three different Reynolds numbers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.