Abstract

In this work, a general elasto-viscoplastic constitutive model incorporating a finite strain viscoplastic flow law, the Kocks-Mecking dislocation density evolution, work hardening, stress softening due to dynamic recovery and dynamic recrystallization (DRX), and the Johnson-Mehl-Avarmi-Kolmogorov (JMAK) DRX kinetics was established for modeling the deformation and microstructure evolution of a near-α Ti alloy. A full-implicit stress integration scheme was proposed to implement the constitutive model into the commercial FEM solver ABAQUS/Standard. Isothermal hot compression experiments under various deformation conditions and detailed microstructure characterizations were conducted to study the deformation and DRX behaviors of the alloy, as well as to validate the developed material model. The alloy exhibits a typical discontinuous DRX behavior, macroscopically sensitive to various deformation conditions and microscopically strongly affected by the orientation of prior grains. The simulation results regarding the macroscopic flow stress curves and the local volume fractions of DRX in various regions in the specimen agree well with the experimental results. The proposed material model and the robust numerical implemental scheme can be extended to consider more physical deformation mechanisms and microstructure evolution of advanced structural metals and alloys.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.