Abstract

Detailed studies of iron speciation and mechanism in iron-catalyzed cross-coupling reactions are critical for providing the necessary fundamental insight to drive new reaction development. However, such insight is challenging to obtain due to the prevalence of mixtures of unstable, paramagnetic organoiron species that can form in this chemistry. A physical-inorganic research approach combining freeze-trapped inorganic spectroscopic studies, organometallic synthesis and GC/kinetic studies provides a powerful method for studying such systems. Mössbauer, EPR and MCD spectroscopy enable the direct investigation of in situ formed iron species and, combined with GC analysis, the direct correlation of reactions of specific iron species to the generation of organic products. This review focuses on a description of the key methods involved in this physical-inorganic approach, as well as examples of its application to investigations of iron-SciOPP catalyzed cross-coupling catalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.