Abstract

Circulating tumor cells (CTC) have been implicated in the hematogenous spread of cancer. To investigate the fluid phase of cancer from a physical sciences perspective, the multi-institutional Physical Sciences-Oncology Center (PS-OC) Network performed multidisciplinary biophysical studies of single CTC and CTC aggregates from a patient with breast cancer. CTCs, ranging from single cells to aggregates comprised of 2-5 cells, were isolated using the high-definition CTC assay and biophysically profiled using quantitative phase microscopy. Single CTCs and aggregates were then modeled in an in vitro system comprised of multiple breast cancer cell lines and microfluidic devices used to model E-selectin mediated rolling in the vasculature. Using a numerical model coupling elastic collisions between red blood cells and CTCs, the dependence of CTC vascular margination on single CTCs and CTC aggregate morphology and stiffness was interrogated. These results provide a multifaceted characterization of single CTC and CTC aggregate dynamics in the vasculature and illustrate a framework to integrate clinical, biophysical, and mathematical approaches to enhance our understanding of the fluid phase of cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.