Abstract

This paper presents a physical model based on energy approach to explain the intermittent electromagnetic radiation during plastic deformation of metals. The model proposes that during progressive plastic deformation, edge dislocations move through a succession of locking and unlocking stages, amid the pinning barriers such as impurity atoms, dislocation network, etc. and give rise to the intermittent electromagnetic radiation. The net activation energy required for locking, unlocking and intermittent movement of edge dislocations is supplied by externally applied stress in the form of strain energy. The model has been elucidated by considering the stress–strain relationship for strain hardening. The theoretical results are validated by some fresh experiments on commercially pure aluminium and show a close agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call