Abstract

The experimental elastic moduli‐porosity trends for clean sandstones can be described by the modified upper Hashin‐Shtrikman (MUHS) bound. One geometrical (but not necessarily geological) realization is: as porosity decreases, the number of the pores stays the same and each pore shrinks while maintaining its shape. This concept of uniform porosity reduction implies that permeability is proportional to the effective porosity squared, and that formation factor is proportional to the inverse of the effective porosity. The effective porosity here refers to the part of the pore‐space that dominates fluid flow. The proposed relations for permeability and formation factor agree well with the experimentally observed values. These laws are different from the often used forms of the Kozeny‐Carman equation and Archie’s law, where permeability is proportional to the total porosity cubed and formation factor is proportional to the inverse of the total porosity squared, respectively. We suggest that the uniform porosity reduction concept be used in consolidated rocks with porosities below 0.3. The transition from high‐porosity unconsolidated sands to consolidated sandstones can be described by the cementation theory: the MUHS moduli‐porosity curves connect with those predicted by the cementation theory at the porosity of about 0.3. This scheme is not appropriate for modeling other porosity reduction mechanisms such as glass bead sintering because, during sintering, the pores do not maintain their shapes, rather they gradually evolve to rounder, stiffer pores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.