Abstract

We have used pulsed field gel electrophoresis and megabase DNA techniques to investigate the basic genomic organization of Ralstonia eutropha H16, and to construct a physical map of its indigenous megaplasmid pHG1. This Gram-negative, soil-dwelling bacterium is a facultative chemolithoautotroph and a denitrifier. In the absence of organic substrates it can grow on H 2 as its sole energy source and CO 2 as its sole source of carbon. Under anaerobic conditions it can utilize nitrate as a terminal electron acceptor, whereby dinitrogen is released. Essential genetic determinants of the enzyme systems responsible for these metabolic processes are linked to the 0.44-Mb conjugative megaplasmid pHG1. Aside from pHG1, the genome of R. eutropha H16 is comprised of two circular chromosomes measuring 4.1 and 2.9 Mb, adding up to a total genome size of 7.1 Mb. An estimated five copies of rDNA are distributed on the two chromosomes. A macrorestriction map of pHG1 was derived for the endonucleases DraI and XbaI. Hybridization studies showed that genes for anaerobic metabolism are located on all three genomic replicons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.