Abstract
BackgroundAlu repetitive elements are the abundant sequences in human genome. Diversity of DNA sequences of these elements makes difficult the construction of theoretical patterns of Alu repeats cleavage by restriction endonucleases. We have proposed a method of restriction analysis of Alu repeats sequences in silico.ResultsSimple software to analyze Alu repeats database has been suggested and Alu repeats digestion patterns for several restriction enzymes' recognition sites have been constructed. Restriction maps of Alu repeats cleavage for corresponding restriction enzymes have been calculated and plotted. Theoretical data have been compared with experimental results on DNA hydrolysis with restriction enzymes, which we obtained earlier.ConclusionAlu repeats digestions provide the main contribution to the patterns of human chromosomal DNA cleavage. This corresponds to the experimental data on total human DNA hydrolysis with restriction enzymes.
Highlights
Alu repetitive elements are the abundant sequences in human genome
Alu repeats digestions provide the main contribution to the patterns of human chromosomal DNA cleavage
Earlier we have shown that mammalian DNAs hydrolysis with restriction enzymes and subsequent DNA products separation in gel-electrophoresis produce cleavage patterns, which mainly correlate to the DNA fragment peaks in distribution diagrams obtained by computer analysis of published genomes [11,12,13]
Summary
Alu repetitive elements are the abundant sequences in human genome. Diversity of DNA sequences of these elements makes difficult the construction of theoretical patterns of Alu repeats cleavage by restriction endonucleases. We have proposed a method of restriction analysis of Alu repeats sequences in silico. The Alu family of DNA repeats, which belongs to SINE group, is one of the most abundant and well characterized repetitive elements. The total number of annotated Alu sequences in the database of human genome is more than 1 million copies and their fraction in genome is about 10% [1]. The details of Alu repeats retroposition in human genome are still unclear and it is difficult to explain Alu repeats abundance in genomic sequence [5]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.