Abstract

BackgroundAlu repetitive elements are the abundant sequences in human genome. Diversity of DNA sequences of these elements makes difficult the construction of theoretical patterns of Alu repeats cleavage by restriction endonucleases. We have proposed a method of restriction analysis of Alu repeats sequences in silico.ResultsSimple software to analyze Alu repeats database has been suggested and Alu repeats digestion patterns for several restriction enzymes' recognition sites have been constructed. Restriction maps of Alu repeats cleavage for corresponding restriction enzymes have been calculated and plotted. Theoretical data have been compared with experimental results on DNA hydrolysis with restriction enzymes, which we obtained earlier.ConclusionAlu repeats digestions provide the main contribution to the patterns of human chromosomal DNA cleavage. This corresponds to the experimental data on total human DNA hydrolysis with restriction enzymes.

Highlights

  • Alu repetitive elements are the abundant sequences in human genome

  • Alu repeats digestions provide the main contribution to the patterns of human chromosomal DNA cleavage

  • Earlier we have shown that mammalian DNAs hydrolysis with restriction enzymes and subsequent DNA products separation in gel-electrophoresis produce cleavage patterns, which mainly correlate to the DNA fragment peaks in distribution diagrams obtained by computer analysis of published genomes [11,12,13]

Read more

Summary

Introduction

Alu repetitive elements are the abundant sequences in human genome. Diversity of DNA sequences of these elements makes difficult the construction of theoretical patterns of Alu repeats cleavage by restriction endonucleases. We have proposed a method of restriction analysis of Alu repeats sequences in silico. The Alu family of DNA repeats, which belongs to SINE group, is one of the most abundant and well characterized repetitive elements. The total number of annotated Alu sequences in the database of human genome is more than 1 million copies and their fraction in genome is about 10% [1]. The details of Alu repeats retroposition in human genome are still unclear and it is difficult to explain Alu repeats abundance in genomic sequence [5]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call