Abstract

Intentional electromagnetic interference attacks (e.g., jamming) against wireless connected devices such as the Internet of Things (IoT) remain a serious challenge, especially as such attacks evolve in complexity. Similarly, eavesdropping on wireless communication channels persists as an inherent vulnerability that is often exploited by adversaries. This article investigates a novel approach to enhancing information security for IoT systems via collaborative strategies that can effectively mitigate attacks targeting availability via interference and confidentiality via eavesdropping. We examine the proposed approach for two use cases. First, we consider an IoT device that experiences an interference attack, causing wireless channel outages and hindering access to transmitted IoT data. A physical-layer-based security (PLS) transmission strategy is proposed in this article to maintain target levels of information availability for devices targeted by adversarial interference. In the proposed strategy, select IoT devices leverage a cooperative transmission approach to mitigate the IoT signal outages under active interference attacks. Second, we consider the case of information confidentiality for IoT devices as they communicate over wireless channels with possible eavesdroppers. In this case, we propose a collaborative transmission strategy where IoT devices create a signal outage for the eavesdropper, preventing it from decoding the signal of the targeted devices. The analytical and numerical results of this article illustrate the effectiveness of the proposed transmission strategy in achieving desired IoT security levels with respect to availability and confidentiality for both use cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.