Abstract

CONTEXT The spin of a particle is physically manifest in multiple phenomena. For quantum mechanics (QM), spin is an intrinsic property of a point particle, but an ontological explanation is lacking. In this paper we propose a physical explanation for spin at the sub-particle level, using a non-local hidden-variable (NLHV) theory. APPROACH Mechanisms for spin were inferred from the Cordus NLHV theory, specifically from theorised structures at the sub-particle level. RESULTS Physical geometry of the particle can explain spin phenomena: polarisation, Pauli exclusion principle (Einstein-Podolsky-Rosen paradox), excited states, and selective spin of neutrino species. A quantitative derivation is provided for electron spin g-factor g = 2, and a qualitative explanation for the anomalous component. IMPLICATIONS NLHV theory offers a candidate route to new physics at the sub-particle level. This also implies philosophically that physical realism may apply to physics at the deeper level below QM. ORIGINALITY The electron g-factor has been derived using sub-particle structures in NLHV theory, without using quantum theory. This is significant as the g-factor is otherwise considered uniquely predicted by QM. Explanations are provided for spin phenomena in terms of physical sub-structures to the particle.

Highlights

  • In this paper we propose a physical explanation for spin at the sub-particle level, using a non-local hidden-variable (NLHV) theory

  • This paper offers a physical explanation for spin using non-local hidden-variable (NLHV) theory, the variant called the Cordus theory [6]

  • Starting from first principles of geometry, we have shown that physical structures at the sub-particle level can explain multiple spin phenomena including polarisation, features of coherent-decoherent assemblies, Pauli exclusion principle (Einstein-Podolsky-Rosen paradox), excited states, and selective spin of neutrino species

Read more

Summary

Introduction

Under the assumptions of this theory, spin parameters arise naturally as properties of the physical structures at the sub-particle level This is used to provide physical explanations of the Pauli Exclusion Principle and the selective spin of neutrino species. The orbital angular momentum is generally believed to involve a particle moving in a circular locus, such as an electron moving round the nucleus, or two quarks spinning around each other. It is quantized, as opposed to being a continuous variable, and takes on integer values.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.