Abstract

A comprehensive physical domain-based formulation of reduced-order models based on dominant and residual normal modes and interface reduction is presented. The dynamic behavior of the substructures is characterized by the dominant fixed interface normal modes and by the static contribution of higher order modes. Interface reduction is accomplished by using a reduced number of interface modes. Special attention is considered to the proper treatment of residual normal modes in the context of system reanalyses and sensitivity analyses. The efficiency of the resultant formulation is evaluated in the framework of dynamic response characterization, modal sensitivity analysis and uncertainty propagation analysis. The effectiveness of the proposed model reduction technique is demonstrated by means of numerical examples involving two structural models. Numerical results show that the technique allows an effective dynamic modeling and reanalysis of a class of structural models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.