Abstract

We report a compact modeling framework based on the Grove–Frohman (GF) model and artificial neural networks (ANNs) for emerging gate-all-around (GAA) MOSFETs. The framework consists of two ANNs; the first ANN constructed with the drain current model not only can capture the main trend of device <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\textit{I}$</tex-math> </inline-formula> – <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\textit{V}$</tex-math> </inline-formula> characteristics but also can predict its variation even when the amount of training data for the ANN is insufficient or outside the range of applied biases. The second one is then designed to improve the model accuracy by further minimizing the errors between the target and the model outputs. We implement the proposed framework to accurately model emerging GAA nanosheet (NS) MOSFETs and complementary FETs (CFETs) without suffering from divergent issues in circuit simulation. In addition, nonphysical behaviors, such as nonzero current at zero bias, do not occur in the modeling framework. Compared to recently reported machine-learning (ML) models, our approach can achieve a similar level of model accuracy with merely 20% amount of the training data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.