Abstract

The generalized density evolution equation proposed in recent years profoundly reveals the intrinsic connection between deterministic systems and stochastic systems by introducing physical relationships into stochastic systems. On this basis, a physical stochastic optimal control scheme of structures is developed in this paper, which extends the classical stochastic optimal control methods, and can govern the evolution details of system performance, while the classical stochastic optimal control schemes, such as the LQG control, essentially hold the system statistics since there is still a lack of efficient methods to solve the response process of the stochastic systems with strong nonlinearities in the context of classical random mechanics. It is practically useful to general nonlinear systems driven by non-stationary and non-Gaussian stochastic processes. The celebrated Pontryagin’s maximum principles is employed to conduct the physical solutions of the state vector and the control force vector of stochastic optimal controls of closed-loop systems by synthesizing deterministic optimal control solutions of a collection of representative excitation driven systems using the generalized density evolution equation. Further, the selection strategy of weighting matrices of stochastic optimal controls is discussed to construct optimal control policies based on a control criterion of system second-order statistics assessment. The stochastic optimal control of an active tension control system is investigated, subjected to the random ground motion represented by a physical stochastic earthquake model. The investigation reveals that the structural seismic performance is significantly improved when the optimal control strategy is applied. A comparative study, meanwhile, between the advocated method and the LQG control is carried out, indicating that the LQG control using nominal Gaussian white noise as the external excitation cannot be used to design a reasonable control system for civil engineering structures, while the advocated method can reach the desirable objective performance. The optimal control strategy is then further employed in the investigation of the stochastic optimal control of an eight-storey shear frame. Numerical examples elucidate the validity and applicability of the developed physical stochastic optimal control methodology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.