Abstract

An interaction between molten fuel of a nuclear reactor, which is called corium and mainly consisted of UO 2 and ZrO 2, and sub-cooled water may result in a steam explosion. It is one of the outstanding reactor safety issues. To investigate the fundamental mechanism behind the recent experimental observation that the composition of the material highly affected the strength of the steam explosion, a physical and chemical analysis for the fast quenched particles of UO 2 and ZrO 2 mixture at different compositions was performed. Six cases were selected for the study, in which the melt composition was changed, while other initial and boundary conditions of the molten fuel and water interaction tests were maintained the same. It was observed that the cases at eutectic composition resulted in a spontaneous steam explosion, while the cases at non-eutectic composition did not result in a spontaneous steam explosion. Electron probe microanalysis (EPMA) was performed for fast quenched particles along a cross-section. Results demonstrated that the UO 2 and ZrO 2 mixtures formed a solid solution of U 1− x Zr x O 2. The mechanism for the hydrogen generation during the molten material and water interaction was examined by thermogravity analysis (TGA), X-ray diffraction (XRD) and hydrogen reduction analysis. It was demonstrated that the hydrogen generation was not directly related to the oxidation of UO 2. Morphologies observed by scanning electron microscopy (SEM) indicated that the particles from the eutectic mixture had many holes, while the particles at non-eutectic mixture did not. The existence of mush phase for the non-eutectic mixture is suggested to be the reason for the non-explosive nature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.