Abstract

Calcium-dependent protein kinases (CDPKs) are a novel class of signaling molecules that have been broadly implicated in relaying specific calcium-mediated responses to biotic and abiotic stress as well as developmental cues in both plants and protists. Calcium-dependent autophosphorylation has been observed in almost all CDPKs examined, but a physiological role for autophosphorylation has not been demonstrated. To date, only a handful of autophosphorylation sites have been mapped to specific residues within CDPK amino acid sequences. In an attempt to gain further insight into this phenomenon, we have mapped autophosphorylation sites and compared these phosphorylation patterns among multiple CDPK isoforms. From eight CDPKs and two CDPK-related kinases from Arabidopsis thaliana and Plasmodium falciparum, 31 new autophosphorylation sites were characterized, which in addition to the previously described sites, allowed the identification of five conserved loci. Of the 35 total sites analyzed approximately one-half were observed in the N-terminal variable domain. Homology models were generated for the protein kinase and calmodulin-like domains, each containing two of the five conserved sites, to allow intelligent speculation regarding subsequent lines of investigation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.