Abstract

We examined the evolution of the repeat regions of three noncoding microsatellite loci in 58 species of the Polistinae, a subfamily of wasps that diverged over 140 million years ago. A phylogenetic approach allows two new kinds of approaches to studying microsatellite evolution: character mapping and comparative analysis. The basic repeat structure of the loci was highly conserved, but was often punctuated with imperfections that appear to be phylogenetically informative. Repeat numbers evolved more rapidly than other changes in the repeat region. Changes in number of repeats among species seem consistent with the stepwise mutation model, which is based on slippage during replication as the main source of mutations. Changes in repeat numbers can occur even when there are very few tandem repeats but longer repeats, especially perfect repeats led to greater rates of evolutionary change. Species phylogenetically closer to the one from which we identified the loci had longer stretches of uninterrupted repeats and more different motifs, but not longer total repeat regions. The number of perfect repeats increased more often than it decreased. However, there was no evidence that some species have consistently greater numbers of repeats across loci than other species have, once ascertainment bias is eliminated. We also found no evidence for a population size effect posited by one form of the directionality hypothesis. Overall, phylogenetic variation in repeat regions can be explained by adding neutral evolution to what is already known about the mutation process. The life cycle of microsatellites appears to reflect a balance between growth by slippage and degradation by an essentially irreversible accumulation of imperfections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.