Abstract
SummaryBody feathers ensure both waterproofing and insulation in waterbirds, but how natural variation in the morphological properties of these appendages relates to environmental constraints remains largely unexplored. Here, we test how habitat and thermal condition affect the morphology of body feathers, using a phylogenetic comparative analysis of five structural traits [i.e., total feather length, the lengths of the pennaceous (distal) and plumulaceous (proximal) sections, barb density, and pennaceous barbule density] from a sample of 194 European bird species.Body feather total length is shorter in aquatic than in terrestrial birds, and this difference between groups is due to the shorter plumulaceous feather section in aquatic birds. Indeed, a reduced plumulaceous section in feather length probably reflects the need to limit air trapped in the plumage to adjust the buoyancy of aquatic birds. In contrast, the high pennaceous barbule density of aquatic birds compared to their terrestrial counterparts reflects water resistance of the plumage in contact with water.Our results show that birds living in environments with low ambient temperature have long plumulaceous feather lengths, low barb density, and low pennaceous barbule density. Data also suggest that plumage probably has limited function in reducing the heat absorption of species living in hot environments.Our results have broad implications for understanding the suite of selection pressures driving the evolution of body feather functional morphology. It remains to be tested, however, how other feather traits, such as the density of plumage (feathers per unit area) and the relative number of different feather types, for example downy feathers, are distributed amongst birds with different water resistance and thermoinsulative needs.Alay summaryis available for this article.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.