Abstract

The infrageneric delimitation of Momordica, a medicinally important genus of Cucurbitaceae, is ill-defined until date. Momordica chromosomes are extremely small and are difficult to stain and visualize because of the dense cytoplasmic background. We have conducted karyomorphometric analysis by EMA method in five Indian Momordica species, and the nuclear genome sizes were estimated by flow cytometry for the first time. The somatic chromosome numbers ranged from 2n = 18 to 56 in the species. We have resolved previously disputed chromosome numbers in M. cymbalaria and M. dioica as 2n = 18 (lowest) and 2n = 56, respectively. Chromosome counts in the other species were re-confirmed as 2n = 22 in M. charantia, 2n = 28 in M. cochinchinensis and 2n = 56 in M. subangulata. The largest genome size was recorded in M. cymbalaria (3.74pg 2C-1), while the smallest size (0.72pg 2C-1) was detected in M. charantia var. charantia. The nuclear genome sizes were analysed in comparison to chromosome numbers and total chromosome lengths of the species. Karyomorphometric indices showed comparable symmetric karyotypes in the species except in M. cymbalaria having tendency towards asymmetry. The UPGMA phenogram and principle component analysis based on nuclear DNA contents and karyomorphometric parameters demonstrated interspecies differences, intraspecific distinction within M. charantia varieties and highlighted distinction of M. cymbalaria. This study was further supported by the rDNA ITS sequence-based phylogenetic analysis which revealed the monophyletic origin of the Indian members of Momordica and clarified the intraspecies relationship among the studied members. As a whole, the study brought out new insights on species diversification within the genus Momordica in India and would benefit further studies on biosystematics and plant breeding programmes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.