Abstract
Since succinoglycan (SG) produced by Sinorhizobium meliloti is an anionic polysaccharide having substituents such as succinate and pyruvate groups, a polyelectrolyte composite hydrogel can be made together with chitosan (CS), a cationic polysaccharide. We fabricated polyelectrolyte SG/CS hydrogels using the semi-dissolving acidified sol-gel transfer (SD-A-SGT) method. The hydrogel showed optimized mechanical strength and thermal stability at an SG:CS weight ratio of 3:1. This optimized SG/CS hydrogel exhibited a high compressive stress of 497.67 kPa at 84.65 % strain and a high tensile strength of 9.14 kPa when stretched to 43.73 %. Additionally, this SG/CS hydrogel showed a pH-controlled drug release pattern for 5-fluorouracil (5-FU), where a change from pH 7.4 to 2.0 increased the release from 60 % to 94 %. In addition, this SG/CS hydrogel not only showed a cell viability of 97.57 %, but also showed synergistic antibacterial activity of 97.75 % and 96.76 % against S. aureus and E. coli, respectively. These results indicate the potential of this hydrogel as a biocompatible and biodegradable hydrogel material for wound healing, tissue engineering, and drug release systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.