Abstract

AbstractIn this study, we report on a novel composite membrane system for pH‐responsive controlled release, which is composed of a porous membrane with linear grafted, positively pH‐responsive polymeric gates acting as functional valves, and a crosslinked, negatively pH‐responsive hydrogel inside the reservoir working as a functional pumping element. The proposed system features a large responsive release rate that goes effectively beyond the limit of concentration‐driven diffusion due to the pumping effects of the negatively pH‐responsive hydrogel inside the reservoir. The pH‐responsive gating membranes were prepared by grafting poly(methacrylic acid) (PMAA) linear chains onto porous polyvinylidene fluoride (PVDF) membrane substrates using a plasma‐graft pore‐filling polymerization, and the crosslinked poly(N,N‐dimethylaminoethyl methacrylate) (PDM) hydrogels were synthesized by free radical polymerization. The volume phase‐transition characteristics of PMAA and PDM were opposite. The proposed system opens new doors for pH‐responsive “smart” or “intelligent” controlled‐release systems, which are highly attractive for drug‐delivery systems, chemical carriers, sensors, and so on.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.