Abstract
AbstractPostoperative pain, as a common and significant healthcare issue, has always been the focus of attention in the field of anesthesia for its control and treatment. In the present study, a pH‐responsive microneedle (MN) patch is developed for sustained incisional analgesia after surgery. The MN patch has a 10 × 10 MN array within 0.5 cm2 area, and each MN features a complete core‐shell structure, with a needle height of ≈850 µm. Upon application, the MNs fully implant in the skin within 15 min due to the rapid dissolution of the water‐soluble backing layer. The acidic microenvironment at the surgical site (pH 6.8–7.0) interacts with the pH‐reactive medium in the MN shell, triggering the shell rupture. This process enables the smooth release of encapsulated local anesthetic drug (Ropivacaine, Rop) microcrystals, extending local anesthesia duration to over 72 h at a drug concentration of 100 mg mL−1. Additionally, the MN patch intelligently modulates drug release based on the postoperative pain behavior, which correlates with the pH value of the surgical incision microenvironment. This responsive feature results in a prolonged and personalized analgesic effect, addressing the limitations of existing invasive treatments in postoperative pain management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.