Abstract

The construction of an effective antibacterial micro-environment to prevent infection and biofilm formation is critically important for the design of wound dressings. Herein, a novel hydrogel wound dressing was fabricated by embedding Au nanoparticles-decorated halloysite nanotubes (Au@HNTs) into the lignin-based hydrogel matrix containing polyvinyl alcohol and chitosan. The resulting composite hydrogel, noted as LPC-Au@HNTs, exhibited an excellent photothermal antibacterial activity owing to the embedded Au@HNTs in which Au nanoparticles were generously filled into the lumen of Halloysite nanotubes. The typical sample containing 4 wt% of Au@HNTs in the composite hydrogel (LPC-Au@HNTs4) had good mechanical and photothermal properties. The surface temperature of as-prepared hydrogel increased to 57.59 °C after 5 min upon NIR light irradiation (808 nm) at 1.0 W/cm2. The photothermal effect endowed the hydrogel dressing with excellent antibacterial activity, with significantly enhanced inhibition rates of Escherichia coli (99.00 %) and Staphylococcus aureus (98.88 %). Experiments in a mouse full-thickness skin defect wound model also showed that the hydrogel dressing had a facilitative effect on the repair of traumatic surfaces. This study provides a broadly appliable wound dressing for treating bacteria-infected wounds, greatly contributing to the design of photothermal antibacterial biomedical materials for wound healing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call