Abstract

Although the single-modal antibacterial technology has received widespread attention, it has limitations because of challenges associated with the complete eradication of bacteria. Herein, we present a synergistic antibacterial strategy based on copper peroxide loaded-tungsten disulfide nanoflowers (CP@WS2 NFs). In this system, copper peroxide can self-supply H2O2 to activate the Fenton reaction, which causes the destruction of some bacteria under acidic condition. Under near-infrared laser irradiation, WS2 NFs transform light-to-localized heat to eliminate the remaining bacteria. The system can cause serious leakage of cell components, reduce the amount of adenosine triphosphate and destroy the bacterial membrane. In vitro experiments indicated a predominant synergistic antibacterial effect on Escherichia coli and Staphylococcus aureus. In vivo experiments of wound healing confirmed that the system can enhance bacterial elimination, concurrently promoting wound healing with high biocompatibility. In addition, our study reveals a promising dimension for the rational design of a synergistic antibacterial system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call