Abstract

In clinical cancer research, it is quite promising to develop multimodal synergistic therapeutic strategies. Photodynamic and photothermal synergistic therapy is a very desirable multimodal therapy strategy. Herein, we report a facile and simple method to construct a nanotherapeutic agent for photodynamic and photothermal therapy. This nanotherapeutic agent (ZnO@Ce6-PDA) is composed of a ZnO nanoparticle core, an interlayer of photosensitizer chlorin e6 (Ce6) and an outer layer of polydopamine (PDA). Due to the existence of Ce6, the ZnO@Ce6-PDA can efficiently generate singlet oxygen (1O2) under 660 nm laser irradiation. Moreover, the ZnO@Ce6-PDA can serve as a photothermal agent, because of the excellent photothermal conversion efficiency of the PDA coating layer in the presence of 780 nm laser. Experiment results demonstrated that the designed nanotherapeutic agent had outstanding phototoxicity upon the combination of laser irradiation at 660 and 780 nm. Thus, our work proves that the ZnO@Ce6-PDA is a promising photodynamic/photothermal dual-modal nanotherapeutic agent for enhanced cancer therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call