Abstract

A trigonal Cr3+ (3d3) defect in sillenite type Bi12SiO20 crystals co-doped with chromium and phosphorus has been identified by means of multi-frequency X-band (9.4 GHz), Q-band (35 GHz) and W-band (94 GHz) electron paramagnetic resonance (EPR). A consistent analysis of the observed spectra and their angular dependence was reached using an S = 3/2 spin Hamiltonian with axial symmetry around a 〈111〉 crystallographic direction, an isotropic g-value g = 1.983, and a zero field splitting parameter B20 = 0.1950 cm−1. The spectra are attributed to a chromium ion in the unusual Cr3+ valence replacing a substitutional Si4+ in tetrahedral oxygen coordination. Evidence is found that the symmetry lowering from tetrahedral to trigonal is not spontaneous but induced by an associated defect, for which a P5+ ion in a nearest-neighbor Si4+ site is the most plausible candidate. Optical excitation results in a reversible charge transfer process directly correlated with a photochromic effect: near-UV light leads to a strong reduction of the Cr3+ EPR signals, and induces a broad band at 675 nm in the absorption spectrum, and both effects are reversed under red light excitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call