Abstract

Controlling the order and lifetimes of electronically excited states is essential to effective light-to-potential energy conversion by molecular chromophores. This work reports a luminescent and photoreactive iron(II) complex, the first performant group homologue of prototypical sensitizers of ruthenium. Double cyclometalation of a phenylphenanthroline framework at iron(II) favors the population of a triplet metal-to-ligand charge transfer (3MLCT) state as the lowest energy excited state. Near-infrared (NIR) luminescence exhibits a monoexponential decay with τ = 2.4 ns in the solid state and 1 ns in liquid phase. Lifetimes of 14 ns at 77 K are in line with a narrowing of the NIR emission band at λem,max = 1170-1230 nm. Featuring a 3MLCT excited-state redox potential of -2 V vs the ferrocene/ferrocenium couple, the use of the Fe(II) chromophore as a sensitizer for light-driven synthesis is exemplified by the radical cross-coupling of 4-chlorobromobenzene and benzene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call