Abstract

We describe a photonic-plasmonic nanostructure, for significantly enhancing the absorption of long-wavelength photons in thin-film silicon solar cells, with the promise of exceeding the classical 4n2 limit for enhancement. We compare identical solar cells deposited on the photonic-plasmonic structure, randomly textured back reflectors and silver-coated flat reflectors. The state-of-the-art back reflectors, using annealed Ag or etched ZnO, had high diffuse and total reflectance. For nano-crystalline Si absorbers with comparable thickness, the highest absorption and photo-current of 21.5 mA/cm2 was obtained for photonic-plasmonic back-reflectors. The periodic photonic plasmonic structures scatter and reradiate light more effectively than a randomly roughened surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.