Abstract

We show that the self-imaging principle still holds true in multi-mode photonic crystal (PhC) line-defect waveguides just as it does in conventional multi-mode waveguides. To observe the images reproduced by this self-imaging phenomenon, the finite-difference time-domain computation is performed on a multi-mode PhC line-defect waveguide that supports five guided modes. From the computed result, the reproduced images are identified and their positions along the propagation axis are theoretically described by self-imaging conditions which are derived from guided mode propagation analysis. We report a good agreement between the computational simulation and the theoretical description. As a possible application of our work, a photonic crystal 1-to-2 wavelength de-multiplexer is designed and its performance is numerically verified. This approach can be extended to novel designs of PhC devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.