Abstract
We propose a time-dependent heat engine based on a single quantum dot (QD) sandwiched between two metallic electrodes. An external time-dependent field is applied on the single QD, which induces the periodic oscillation of energy levels inside the QD. Thus, the multiple transport channels are opened, resulting in the occurrence of the photon-assisted work regions for the heat engine. When an external magnetic field is presented, a photon-assisted single-spin heat engine is achieved. In some energy regions, the heat engine can be used to produce the single-spin current. Our results presented here indicate a way to fabricate the photon-assisted QD thermospin devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.