Abstract

C-Alkyl glycosides and glycoproteins exist in natural products and are prized for their role as carbohydrate mimics in drug design. However, a practical strategy that merges glycosyl donors with readily accessible reagents, derived from abundant carboxylic acid and amine feedstocks, is yet to be conceived. Herein, we show that a nickel catalyst promotes C-C coupling between glycosyl halides and aliphatic acids or primary amines (converted into redox-active electrophiles in one step), in the presence of Hantzsch ester and LiI (or Et3 N) under blue LED illumination to deliver C-alkyl glycosides with high diastereoselectivity. Mechanistic studies support the photoinduced formation of alkyl radicals that react with a glycosyl nickel species generated in situ to facilitate cross-coupling. Through this manifold, innate CO2 H and NH2 motifs embedded within amino acids and oligopeptides are selectively capped and functionalized to afford glycopeptide conjugates through late-stage glycosylation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call