Abstract

Non-covalent interacting porphyrin/Graphene Oxide (GO) nanohybrids were formed in water and confirmed by TEM, Raman, FT-IR, XRD, UV-vis and fluorescence spectroscopy. The binding constant between porphyrin and GO is 2.38 × 103 L mol−1 calculated by Benesi-Hildebrand equation based on absorbance plot, which confirmed a robust porphyrin/GO nanohybrid formation. Fluorescence of porphyrin was effectively quenched by GO indicated the efficient photoinduced electron transfer (PET) from porphyrin moieties to GO, which porphyrin acts as energy absorbing and electron transferring antennae and GO serves as an efficient electron acceptor of the system. The photoelectrical response measurements of porphyrin/GO nanohybrid showed a rapid and reversible on/off photovoltage and photocurrent by the alternative white light. The PET from porphyrin to GO is energetically favorable deduced by calculating free Gibbs energy. Non-covalent porphyrin/GO nanohybrid may be used as photovoltaic conversion materials for photoelectronic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.