Abstract
This article reports a detailed mechanistic and kinetic study of an unusual photoreaction leading to the (diazonia)tetrabenzonaphthacene skeleton. The photo‐triggered double intramolecular nucleophilic aromatic substitution (SNAr∗) has been investigated by varying the leaving groups. Photoreaction quantum yields have been determined and mechanistic insights have been supported by theoretical calculations using DFT and TD‐DFT methods. Additionally, we show that this light‐triggered formed diazonia constitutes a potent photosentitizer with a singlet oxygen generation quantum yield of 55 %, both in organic solvents and in water, which is an extremely relevant value in view of PDT applications or use as an oxidation photocatalyst in aqueous media. Once again, the experimental observations were supported by TD‐DFT calculations showing a large density of triplet states below the S1 excited state along with large spin‐orbit couplings. The reaction is not restricted to solutions but can also occur in solid PDMS matrices thus allowing for photochemical encoding of information that will progressively vanish upon prolonged UV‐exposure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.