Abstract

The adsorption and decomposition of molybdenum hexacarbonyl on (1 1 0) TiO 2 surfaces were studied using both core levels and valence band photoemission spectroscopies. It was found that after an adsorption at 140 K, when going back to room temperature, only a small part of molybdenum compounds, previously present at low temperature, remained on the TiO 2 surface. This indicates that the desorption temperature on such a surface is lower than the decomposition one. The use of photon irradiation to decompose the hexacarbonyl molecule was also studied. It was shown that during such a decomposition molecular fragments were chemisorbed on the surface allowing a higher amount of metal to remain on the surface. It was also shown that it was possible to get rid of adsorbed subcarbonyl groups and to organize the metal atoms by thermal treatments at temperatures as low as 400 K, i.e. much lower than the one needed to obtain the same structures using physical vapour deposition (PVD). Moreover, due to lower used temperatures, this chemical way of deposition allows a better control of the interface than during PVD growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.