Abstract

The present work investigates the photoelectrochemical behavior of nanotubular N/C-TiO 2 electrode for hydrogen production. Via the sonoelectrochemical anodization process of 1 h, N-containing TiO 2 based nanotube arrays(N-TNT) with the length of about 650 nm were fabricated in fluoride aqueous solution added 0.25 M NH 4NO 3; C-containing TiO 2 based nanotube arrays(C-TNT) with the length of about 2 μm were prepared in fluoride ethylene glycol solution. In virtue of the longer tubes with the larger surface areas, C-TNT can harvest more light and produce more photoactive sites than N-TNT, which also made the charge transfer resistance in C-TNT larger than that in N-TNT. Considered the more negative flat band potential of C-TNT, C-TNT has the smaller energy barrier and the better photoelectrochemical activity. It may be attributed to the appropriate defect concentration gradient owing to the modification of C element. Under UV–vis light (320–780 nm) irradiation, the average hydrogen generation rate of C-TNT was 282 μL h −1 cm −2. The surface properties and near-surface properties of the resultant electrode were synthetically analyzed by using UV–vis diffuse reflectance spectra(DRS), field emission scanning electron microscopy (FESEM), I-t curves, and electrochemical impedance spectroscopy (EIS) techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.