Abstract

For the first time, a PEC immunosensor based on a signal amplification strategy is successfully constructed to quantitatively detect alpha-fetoprotein in serum sample. Three favorable factors explain the ultra-high sensitivity of this method. Firstly, compared with pure BiPO4, the BiPO4/BiOBr heterojunction has a narrower band gap, which expands the light absorption range and enables the light energy to be fully utilized. Secondly, the separation of photogenerated electrons and hole pairs during PEC detection is due to the efficient matching of energy levels among BiPO4, BiOBr and CdS, inhibiting the recombination of photogenerated electrons, which improves the performance of PEC immunosensor. Thirdly, due to the presence of CdS, the light absorption capability of the sensor is enhanced, more electron-hole pairs are generated, and the photocurrent signal is increase. Under the optimal conditions, the PEC immunosensor shows a wide linear range of 0.001–1000 ng/mL for AFP and a low detection limit of 0.82 pg/mL. The PEC immunosensor developed in this experiment has excellent reproducibility, stability and high sensitivity, and also achieves satisfactory results in the analysis of human serum samples, establishing a new analytical method for biomarker detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.