Abstract

Bisphenol A (BPA) has been penetrating every corner of our daily life via the entities of children’s toys, food containers and electronic equipment. The ubiquitous exposure of BPA urges the implementation of supervising its emission in environment. This work designs a method of photoelectrochemical (PEC) aptasensing for the determination of BPA based on the Cu(I) modified carbon nitride (Cu/g-C3N4). The Cu/g-C3N4 was prepared by solvothermal reaction with the ionic liquid bis(1-hexadecyl-3-methylimidazolium) tetrachlorocuprate (II) as Cu source. Cu/g-C3N4 displays excellent PEC performances due to the introduction of Cu(I). The visible light absorption capacity and conductivity of g-C3N4 can be enhanced by introducing Cu(I). With the help of BPA–binding aptamer immobilized on the surface of Cu/g-C3N4, the Cu/g-C3N4 PEC aptasensor has adopted for the determination of BPA. The PEC aptasensor exhibits a well-fitted linear correlation between the response photocurrent signal and the logarithm of the concentration of BPA. The PEC aptasensor shows a distinguished capability of BPA detection with a wide detection range of 5.00 × 10–11 to 5.00 × 10−5 g L−1 and low detection limit of 1.60 × 10–11 g L–1 (at S/N = 3). This work provides a profound insight for detecting BPA in environmental water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call