Abstract
In this work, a CuS-TiO2 heterojunction composite was prepared by dispersedly depositing CuS nanoparticles on TiO2 nanospheres surface with a hydrothermal method, and was then used to construct a photoelectrochemical (PEC) aptasensor for sensitive detection of microcystin-LR (MC-LR) in aquatic environment. The energy bands of CuS nanoparticles and spherical anatase TiO2 were well matched, which enhanced the photo-to-current conversion efficiency. The composite exhibited the enhanced visible light absorption, the improved separation of photo-generated charges, and the reduced self-aggregation of CuS nanoparticles, leading to the enhanced photocurrent response. The PEC aptasensor was constructed by immobilizing CuS-TiO2 composite on ITO electrode with chitosan film that further covalently bound aminated aptamer. After the target, microcystin-LR (MC-LR) as an analyte model, was captured by the aptamer on the aptasensor, it could be oxidized by the photo-generated hole to impede the electron-hole recombination and further amplify the photocurrent. The PEC aptasensor showed superior analytical performance for MC-LR with a linear range of 5.0 × 10−5 nM to 250 nM and a detection limit of 2.0 × 10−5 nM. The detection results with the aptasensor for practical water samples indicated its promising application in environmental monitoring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.