Abstract

Three-dimensional photoelasticity was employed to study a cylinder in contact with a half-space. Both bodies were modeled in epoxy resin. Three loading cases were examined, namely, the cylinder lying on its side subject to a load normal to the plane, the cylinder on its side subject to both normal and tangential loads and the cylinder standing on its end and subject to a normal compressive load, i.e., as a circular punch. The cylinders and the half-space, which was represented by a large block, were stress frozen with a known coefficient of friction and using relatively small loads so that the strain levels were low. After slicing the cylinders, which resulted in lower fringe orders than could be readily analyzed manually, an automated system based on phase stepping was used to record and process the data. Distributions of maximum shear stress and Cartesian shear stress were obtained for a large area of the slice. Stress separation was performed, using the shear difference method, to obtain the Cartesian stress components in the plane of symmetry of the half-space. These results provide confirmation, by experiment, of the theoretical and numerical models of this type of contact obtained by other investigators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.