Abstract

Nanoscale drug delivery vehicles can facilitate multimodal therapies of cancer by promoting tumour-selective drug release. However, few are effective because cancer cells develop ways to resist and evade treatment. Here, we introduce a photoactivatable multi-inhibitor nanoliposome (PMIL) that imparts light-induced cytotoxicity in synchrony with photo-initiated and sustained release of inhibitors that suppress tumour regrowth and treatment escape signalling pathways. The PMIL consists of a nanoliposome doped with a photoactivatable chromophore (benzoporphyrin derivative, BPD) in the lipid bilayer, and a nanoparticle containing cabozantinib (XL184)—a multikinase inhibitor—encapsulated inside. Near infrared tumour irradiation, following intravenous PMIL administration, triggers photodynamic damage of tumour cells and microvessels, and simultaneously initiates release of XL184 inside the tumour. A single PMIL treatment achieves prolonged tumour reduction in two mouse models and suppresses metastatic escape in an orthotopic pancreatic tumour model. The PMIL offers new prospects for cancer therapy by enabling spatiotemporal control of drug release whilst reducing systemic drug exposure and associated toxicities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.