Abstract
AbstractA series of kinetic experiments were conducted involving visible‐light activated free radical polymerizations with three‐component photoinitiators and 2‐hydroxyethyl methacrylate (HEMA). Three‐component photoinitiator systems generally include a light‐absorbing photosensitizer (PS), an electron donor and an electron acceptor. To compare kinetic efficiency, we used thermodynamic feasibility and measured kinetic data. For this study, 5,10,15,20‐tetraphenyl‐21H,23H‐porphyrin zinc (Zn‐tpp) and camphorquinone (CQ) were used as the PSs. The Rehm‐Weller equation was used to verify the thermodynamic feasibility for the photo‐induced electron transfer reaction. Using the thermodynamic feasibility, we suggest two different kinetic mechanisms, which are (i) photo‐reducible series mechanism of CQ and (ii) photo‐oxidizable series mechanism of Zn‐tpp. Kinetic data were measured by near‐IR spectroscopy and photo‐differential scanning calorimetry based on an equivalent concentration of excited state PS. We report that the photo‐oxidizable series mechanism using Zn‐tpp produced dramatically enhanced conversions and rates of polymerizations compared with those associated with the photo‐reducible series mechanism using CQ. It was concluded from the kinetic results that the photo‐oxidizable series mechanism efficiently retards back electron transfer and the recombination reaction step. In addition, the photo‐oxidizable series mechanism provides an efficient secondary reaction step that involves consumption of the dye‐based radical and regeneration of the original PS. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3131–3141, 2009
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Polymer Science Part A: Polymer Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.