Abstract

Ni-rich layered oxides are regarded as key components for realizing post Li-ion batteries (LIBs). However, high-valence Ni, which acts as an oxidant in deeply delithiated states, aggravates the oxidation of the electrolyte at the cathode, causing cell impedance to increase. Additionally, the leaching of transition metal (TM) ions from Ni-rich cathodes by acidic compounds such as Brønsted-acidic HF produced through LiPF6 hydrolysis aggravates the structural instability of the cathode and renders the electrode-electrolyte interface unstable. Herein, we present a multifunctional electrolyte additive, bis(trimethylsilyl) phosphorofluoridate (BTSPFA), to attain enhanced interfacial stability of graphite anodes and Ni-rich cathodes in Li-ion cells. BTSPFA eliminates the corrosive HF molecules by cleaving silyl ether bonds and enables the formation of a polar P-O- and P-F-enriched cathode electrolyte interface (CEI) on the Ni-rich cathode. It also promotes the creation of a solid electrolyte interphase composed of inorganic-rich species, which suppresses the reduction of the electrolyte during battery operation. The synergistic effect of the HF scavenging ability of BTSPFA and the stable BTSPFA-promoted CEI effectively suppresses the TM leaching from the Ni-rich cathode while also preventing unwanted TM deposition on the anode. LiNi0.8Co0.1Mn0.1O2/graphite full cells with 1 wt % BTSPFA exhibited an enhanced discharge capacity retention of 79.8% after 500 cycles at 1C and 45 °C. These unique features of BTSPFA are useful for resolving the interfacial deterioration issue of high-capacity Ni-rich cathodes paired with graphite anodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.