Abstract

The PDE4 inhibitor roflumilast mitigates bleomycin-induced lung fibrotic remodeling in rodents. In the current study it was explored whether roflumilast N-oxide, the active metabolite of roflumilast influences functions of cultured lung fibroblasts. Cells of the human foetal lung fibroblast strain GM06114 were stimulated with TNF-α (5 ng ml −1) and cell surface ICAM-1 and eotaxin release were assessed. [ methyl- 3H] thymidine incorporation was measured following stimulation with bFGF (10 ng ml −1). α-Smooth muscle actin (protein), CTGF (mRNA) and fibronectin (mRNA) were determined secondary to TGFß1 (1 ng ml −1). In the presence of PGE 2 (1 nM), roflumilast N-oxide reduced TNF-α-induced ICAM-1 and eotaxin by about 70% and >90% with half-maximum inhibition at 0.9 nM and 0.5 nM, respectively. Roflumilast N-oxide also attenuated [ methyl- 3H] thymidine incorporation secondary to bFGF by about 75% with half-maximum inhibition at 0.7 nM when cells were co-incubated with IL-1ß (10 pg ml −1). In the presence of this cytokine roflumilast N-oxide (1 μM) diminished TGFß1-induced expression of α-smooth muscle actin and transcripts of CTGF and fibronectin. In addition, IL-1ß up-regulated PDE4 activity in the lung fibroblasts. Taken together, these findings indicate that roflumilast N-oxide directly targets human lung fibroblasts, which may at least partially explain the efficacy of roflumilast to mitigate a pulmonary fibrotic response in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.